Einen neuen Bericht mit einem Parameter erstellen
Nachdem du dem Dokument einen Parameter hinzugefügt hast, erstellst du jetzt aus den investment_services_projects-Daten mithilfe des Parameters country einen neuen Bericht für Bangladesch.
Bevor du den Bericht strickst, überprüfst und änderst du den Text im Dokument, damit der gestrickte Bericht das im Parameter angegebene Land korrekt widerspiegelt.
Diese Übung ist Teil des Kurses
Berichten mit R Markdown
Anleitung zur Übung
- Ersetze
Brazilin den Dokument-Headern durch einen Verweis auf den Parametercountry. - Füge im YAML-Header dem Titelfeld
"Investment Report"den Parametercountryhinzu, sodass der Berichtstitel nach dem Stricken als „Investment Report for Projects in Bangladesh“ gerendert wird. - Verwende den Parameter
country, um eine neue Investment-Report-Datei für Bangladesch zu erstellen.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil \n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-investment-projects-2018}\ncountry_investment_projects_2018 <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\")\n\nggplot(country_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in 2018\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}