Using smoothing parameters to avoid overfitting
The smoothing parameter balances between likelihood and wiggliness to optimize model fit. Here, you'll examine smoothing parameters and will fit models with different fixed smoothing parameters.
Diese Übung ist Teil des Kurses
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Anleitung zur Übung
- View the value of the smoothing parameter (\(\lambda\)) of the provided
gam_mod
model by extracting thesp
value from the model. - Fit two models to the
mcycle
data withaccel
as a smooth function oftimes
and a smoothing parameter of:- 0.1
- 0.0001
- Visualize both models.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
library(mgcv)
# Extract the smoothing parameter
gam_mod <- gam(accel ~ s(times), data = mcycle, method = "REML")
___
# Fix the smoothing parameter at 0.1
gam_mod_s1 <- gam(accel ~ s(times), data = mcycle, sp = ___)
# Fix the smoothing parameter at 0.0001
gam_mod_s2 <- gam(___)
# Plot both models
par(mfrow = c(2, 1))
plot(gam_mod_s1, residuals = TRUE, pch = 1)
plot(gam_mod_s2, residuals = TRUE, pch = 1)