Motorcycle crash data: linear approach
In this first exercise, you will fit a linear model to a data set and visualize the results
to see how well it captures relationships in the data. The data set, stored in a data frame named mcycle, contains measurement of acceleration of a crash-test dummy head
during a motorcycle crash. It contains measurements of acceleration (g) in the accel column
and time (milliseconds) in the times column.
Diese Übung ist Teil des Kurses
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Anleitung zur Übung
- Use the
head()andplot()functions to look at the data frame namedmcycle. - Use the
lm()function to fit a model to themcycledata where theaccelvariable is a linear function oftimes. - Visualize the model fit using the provided call to
termplot().
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Examine the mcycle data frame
head(___)
plot(___)
# Fit a linear model
lm_mod <- lm(___, data = mcycle)
# Visualize the model
termplot(lm_mod, partial.resid = TRUE, se = TRUE)