Multivariate GAMs of auto performance
GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg
dataset available in the gamair
package to practice fitting models of different forms.
Diese Übung ist Teil des Kurses
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Anleitung zur Übung
- Use the
head()
andstr()
functions to examine thempg
data set. - Fit a GAM to these data to predict
city.mpg
as the sum of smooth functions ofweight
,length
, andprice
. - Use the
plot()
function provided to visualize the model.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
library(mgcv)
# Examine the data
___
___
# Fit the model
mod_city <- gam(city.mpg ~ ___,
data = mpg, method = "REML")
# Plot the model
plot(mod_city, pages = 1)