LoslegenKostenlos loslegen

Multivariate GAMs of auto performance

GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg dataset available in the gamair package to practice fitting models of different forms.

Diese Übung ist Teil des Kurses

Nonlinear Modeling with Generalized Additive Models (GAMs) in R

Kurs anzeigen

Anleitung zur Übung

  • Use the head() and str() functions to examine the mpg data set.
  • Fit a GAM to these data to predict city.mpg as the sum of smooth functions of weight, length, and price.
  • Use the plot() function provided to visualize the model.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

library(mgcv)

# Examine the data
___
___

# Fit the model
mod_city <- gam(city.mpg ~ ___, 
                data = mpg, method = "REML")

# Plot the model
plot(mod_city, pages = 1)
Code bearbeiten und ausführen