Setting complexity of the motorcycle model
The number of basis functions in a smooth has a great impact on the shapes a model can take. Here, you'll practice modifying the number of basis functions in a model and examining the results.
Diese Übung ist Teil des Kurses
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Anleitung zur Übung
- Fit a GAM with 3 basis functions to the
mcycledata, withaccelas a smooth function oftimes. - Fit the same GAM again, but this time with 20 basis functions.
- Use the provided
plot()functions to visualize both models.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
library(mgcv)
# Fit a GAM with 3 basis functions
gam_mod_k3 <- gam(accel ~ s(times, k = ___), data = mcycle)
# Fit with 20 basis functions
gam_mod_k20 <- gam(___)
# Visualize the GAMs
par(mfrow = c(1, 2))
plot(gam_mod_k3, residuals = TRUE, pch = 1)
plot(gam_mod_k20, residuals = TRUE, pch = 1)