Calculating AUC
The AUC value assesses how well a model can order observations from low probability to be target to high probability to be target. In Python, the roc_auc_score
function can be used to calculate the AUC of the model. It takes the true values of the target and the predictions as arguments.
You will make predictions again, before calculating its roc_auc_score
.
Diese Übung ist Teil des Kurses
Introduction to Predictive Analytics in Python
Anleitung zur Übung
- The model
logreg
from the last chapter has been created and fitted for you, the DataFrameX
contains the predictor columns of the basetable. Make predictions for the objects in the basetable. - Select the second column of
predictions
, as it contains the predictions for the target. - The true values of the target are loaded in
y
. Use theroc_auc_score
function to calculate the AUC of the model.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Make predictions
predictions = logreg.____(____)
predictions_target = predictions[:,____]
# Calculate the AUC value
auc = ____(____, ____)
print(round(auc,2))