Making recommendations with SVD
Now that you have the recalculated matrix with all of its gaps filled in, the next step is to use it to generate predictions and recommendations.
Using calc_pred_ratings_df
that you generated in the last exercise, with all rows and columns filled, find the movies that User_5
is most likely to enjoy.
Diese Übung ist Teil des Kurses
Building Recommendation Engines in Python
Anleitung zur Übung
- Find the highest ranked movies for
User_5
by sorting all the reviews generated forUser_5
from high to low.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Sort the ratings of User 5 from high to low
user_5_ratings = ____.____[____,:].____(____=____)
print(user_5_ratings)