Set the hyperparameter grid of RF
In this exercise, you'll manually set the grid of hyperparameters that will be used to tune rf's hyperparameters and find the optimal regressor. For this purpose, you will be constructing a grid of hyperparameters and tune the number of estimators, the maximum number of features used when splitting each node and the minimum number of samples (or fraction) per leaf.
Bu egzersiz
Machine Learning with Tree-Based Models in Python
kursunun bir parçasıdırEgzersiz talimatları
Define a grid of hyperparameters corresponding to a Python dictionary called
params_rfwith:the key
'n_estimators'set to a list of values 100, 350, 500the key
'max_features'set to a list of values 'log2', 'auto', 'sqrt'the key
'min_samples_leaf'set to a list of values 2, 10, 30
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
# Define the dictionary 'params_rf'
params_rf = ____