BaşlayınÜcretsiz Başlayın

Which is the main predictor?

You've got a remarkable prediction, but what were the main predictors? How can you make sense of the model so that you can go beyond the raw results? Machine learning models are often criticized for their lack of interpretability. However, variable importance rankings shed some light on the relevance of your chosen features with the outcome. So let's investigate variable importance and go from there.

Bu egzersiz

Feature Engineering in R

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Create a variable importance chart.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

lr_fit <- lr_workflow %>%
  fit(test)

lr_aug <- lr_fit %>%
  augment(test)

lr_aug %>% class_evaluate(truth = Attrition,
                          estimate = .pred_class,
                          .pred_No)

# Create a variable importance chart
lr_fit %>%
  extract_fit_parsnip() %>%
  ___(aesthetics = list(fill = "steelblue"), num_features = 5)
Kodu Düzenle ve Çalıştır