BaşlayınÜcretsiz Başlayın

Adjusting the regularization strength

Your current Lasso model has an \(R^2\) score of 84.7%. When a model applies overly powerful regularization it can suffer from high bias, hurting its predictive power.

Let's improve the balance between predictive power and model simplicity by tweaking the alpha parameter.

Bu egzersiz

Dimensionality Reduction in Python

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Find the highest value for alpha that gives an \(R^2\) value above 98% from the options: 1, 0.5, 0.1, and 0.01.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Find the highest alpha value with R-squared above 98%
la = Lasso(____, random_state=0)

# Fits the model and calculates performance stats
la.fit(X_train_std, y_train)
r_squared = la.score(X_test_std, y_test)
n_ignored_features = sum(la.coef_ == 0)

# Print peformance stats 
print(f"The model can predict {r_squared:.1%} of the variance in the test set.")
print(f"{n_ignored_features} out of {len(la.coef_)} features were ignored.")
Kodu Düzenle ve Çalıştır