Adicionando vários parâmetros ao relatório
Antes, você adicionou um parâmetro country para criar novos relatórios que resumem informações sobre os projetos de investimento de qualquer país incluído nos dados investment_services_projects. Agora, você vai adicionar parâmetros para o ano fiscal e modificar o código existente para poder criar novos relatórios sobre os projetos de investimento para qualquer país e ano fiscal a partir dos dados investment_services_projects.
Este exercício faz parte do curso
Relatórios com R Markdown
Instruções do exercício
- Adicione um parâmetro
fypara o ano fiscal e liste2018como o ano fiscal. - Adicione parâmetros para as datas
year_starteyear_end, usando2017-07-01parayear_starte2018-06-30parayear_enddo ano fiscal de 2018. - Substitua as referências de data no
filter()nas linhas64e65por referências aos parâmetrosyear_starteyear_end. - No chunk de código
country-investment-projects-2018, renomeie o chunk paracountry-annual-investment-projectse o nome do objeto e suas referências no texto paracountry_annual_investment_projects.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country` in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-investment-projects-2018}\ncountry_investment_projects_2018 <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(country_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}