ComeçarComece de graça

Definindo opções de chunk localmente

Ao criar um relatório, você pode querer definir as opções do chunk localmente para que a exibição das figuras no relatório final varie. Os dados investment_annual_summary trazem informações de contexto úteis, mas o foco do relatório são os projetos no Brasil. Neste exercício, você vai modificar as opções dos chunks localmente para que os gráficos com informações sobre projetos no Brasil apareçam um pouco maiores no relatório final do que o gráfico que apresenta a visão geral dos dados de Investment Annual Summary.

Este exercício faz parte do curso

Relatórios com R Markdown

Ver curso

Instruções do exercício

  • Complete o chunk investment-annual-summary para que as dimensões de saída da figura resultante sejam 85%.
  • Complete os chunks brazil-investment-projects e brazil-investment-projects-2018 para que as dimensões de saída das figuras sejam 95%.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\noutput: html_document\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\n\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary, ___}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil\n\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts.\n```{r brazil-investment-projects, ___}\nbrazil_investment_projects <- investment_services_projects %>%\n  filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects in Brazil\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil in 2018\n\n```{r brazil-investment-projects-2018, ___}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n  filter(country == \"Brazil\",\n         date_disclosed >= \"2017-07-01\",\n         date_disclosed <= \"2018-06-30\") \n\nggplot(brazil_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects in Brazil in 2018\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  ) \n```\n\n\n"}
Editar e executar o código