ComeçarComece de graça

Personalizando o título, o autor e a data

Anteriormente, você modificou o cabeçalho do documento usando a seção #header. Agora, você vai praticar a personalização das seções de título, autor e data individualmente.

Este exercício faz parte do curso

Relatórios com R Markdown

Ver curso

Instruções do exercício

  • Substitua o nome #header por h1.title, para que essas configurações se apliquem ao título em vez do cabeçalho do documento.
  • Adicione seções para o autor e a data, usando h4.author e h4.date para se referir a cada seção.
  • Para as seções de autor e data, adicione #708090 para a cor do texto, Calibri para a fonte e #F5F5F5 para a cor de fundo.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n  html_document:\n    toc: true\n    toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n  country: Brazil\n  year_start: 2017-07-01\n  year_end: 2018-06-30\n  fy: 2018\n---\n\n\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n  filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in `r params$country` in `r params$fy`\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the `r params$fy` fiscal year, and is referred to as `country_annual_investment_projects`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-annual-investment-projects}\ncountry_annual_investment_projects <- investment_services_projects %>%\n  filter(country == params$country,\n         date_disclosed >= params$year_start,\n         date_disclosed <= params$year_end) \n\nggplot(country_annual_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  ) \n```\n\n\n"}
Editar e executar o código