ComeçarComece de graça

Building a workflow

With your data ready for analysis, you will declare a logistic_model() to predict whether or not they will arrive late.

You assign the role of "ID" to the flight variable to keep it as a reference for analysis and debugging. From the date variable, you will create new features to explicitly model the effect of holidays and represent factors as dummy variables.

Bundling your model and recipe() together using workflow()will help ensure that subsequent fittings or predictions will implement consistent feature engineering steps.

Este exercício faz parte do curso

Feature Engineering in R

Ver curso

Instruções do exercício

  • Assign an "ID" role to flight.
  • Bundle the model and the recipe into a workflow object.
  • Fit lr_workflow to the test data.
  • Tidy the fitted workflow.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

lr_model <- logistic_reg()

# Assign an "ID" role to flight
lr_recipe <- recipe(arrival ~., data = train) %>% update_role(flight, new_role = ___) %>%
  step_holiday(date, holidays = timeDate::listHolidays("US")) %>% step_dummy(all_nominal_predictors())

# Bundle the model and the recipe into a workflow object
lr_workflow <- workflow() %>% add_model(___) %>% add_recipe(___)
lr_workflow

# Fit lr_workflow workflow to the test data  
lr_fit <- lr_workflow %>% ___(data = test)

# Tidy the fitted workflow  
tidy(___)
Editar e executar o código