Which is the main predictor?
You've got a remarkable prediction, but what were the main predictors? How can you make sense of the model so that you can go beyond the raw results? Machine learning models are often criticized for their lack of interpretability. However, variable importance rankings shed some light on the relevance of your chosen features with the outcome. So let's investigate variable importance and go from there.
Este exercício faz parte do curso
Feature Engineering in R
Instruções do exercício
- Create a variable importance chart.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
lr_fit <- lr_workflow %>%
fit(test)
lr_aug <- lr_fit %>%
augment(test)
lr_aug %>% class_evaluate(truth = Attrition,
estimate = .pred_class,
.pred_No)
# Create a variable importance chart
lr_fit %>%
extract_fit_parsnip() %>%
___(aesthetics = list(fill = "steelblue"), num_features = 5)