ComeçarComece de graça

Fitting and assessing the model

Now that you have addressed missing values and created dummy variables, it is time to assess your model's performance!

The attritiondataset, along with the testand train splits, the lr_recipe and your declared logistic_model() are all loaded for you.

Este exercício faz parte do curso

Feature Engineering in R

Ver curso

Instruções do exercício

  • Bundle model and recipe in workflow.
  • Fit workflow to the train data.
  • Generate an augmented data frame for performance assessment.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Bundle model and recipe in workflow
lr_workflow <- ___() %>%
  add_model(lr_model) %>%
  add_recipe(lr_recipe)

# Fit workflow to the train data
lr_fit <- ___(lr_workflow, data = train)

# Generate an augmented data frame for performance assessment
lr_aug <- lr_fit %>% ___(test)

lr_aug %>% roc_curve(truth = Attrition, .pred_No) %>% autoplot()
bind_rows(lr_aug %>% roc_auc(truth = Attrition, .pred_No),          
          lr_aug %>% accuracy(truth = Attrition, .pred_class))
Editar e executar o código