Aan de slagGa gratis aan de slag

Additional results of PCA

PCA models in R produce additional diagnostic and output components:

  • center: the column means used to center to the data, or FALSE if the data weren't centered
  • scale: the column standard deviations used to scale the data, or FALSE if the data weren't scaled
  • rotation: the directions of the principal component vectors in terms of the original features/variables. This information allows you to define new data in terms of the original principal components
  • x: the value of each observation in the original dataset projected to the principal components

You can access these the same as other model components. For example, use pr.out$rotation to access the rotation component.

Which of the following statements is not correct regarding the pr.out model fit on the pokemon data?

Deze oefening maakt deel uit van de cursus

Unsupervised Learning in R

Cursus bekijken

Praktische interactieve oefening

Zet theorie om in actie met een van onze interactieve oefeningen.

Begin met trainen