Aan de slagGa gratis aan de slag

Tidy data

Reshaping your data has several applications. One important application is to switch from a data analytics friendly to a reporting friendly format. This concept is further expanded in the Tidy data paper by Hadley Wickham.

Data in a tidy format also allows you to perform groupby operations as seen in the previous exercise.

In this exercise you will use melt() and .pivot_table() from pandas to reshape your data from one shape to another. Remember that when you call .pivot_table() on your data, you also need to call the .reset_index() method to get your original DataFrame back.

Before you start reshaping the airquality DataFrame, inspect it in the shell. We've imported pandas as pd.

Deze oefening maakt deel uit van de cursus

Python for R Users

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Melt the airquality DataFrame
airquality_melted = ____(____, id_vars=['Day', 'Month'])
print(airquality_melted)
Code bewerken en uitvoeren