Aan de slagGa gratis aan de slag

Missing values

It is very rare to find a dataset that doesn't contain any missing values. Missing values are represented as NaN in pandas. You can use the isnull() pandas function to check for missing values. pd.isnull(df['column']) will return True if the value is missing, or False if there are no missing values.

Compared to R, missing values behave a little differently in Python. For example, the .mean() method automatically ignores missing values in Python. You can also recode missing values with the .fillna() method. This will replace all missing values in the column with the provided value.

In this exercise, we've modified the tips dataset such that it contains some missing values.

Deze oefening maakt deel uit van de cursus

Python for R Users

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Print the rows where total_bill is missing
print(tips.loc[____(____)])
Code bewerken en uitvoeren