Aan de slagGa gratis aan de slag

Training another scikit-learn model

All sklearn models have .fit() and .predict() methods like the one you used in the previous exercise for the LogisticRegression model. This feature allows you to easily try many different models to see which one gives you the best performance. To get you more confident with using the sklearn API, in this exercise you'll try fitting a DecisionTreeClassifier instead of a LogisticRegression.

Deze oefening maakt deel uit van de cursus

Marketing Analytics: Predicting Customer Churn in Python

Cursus bekijken

Oefeninstructies

  • Import DecisionTreeClassifier from sklearn.tree.
  • Instantiate the classifier, storing the result in clf.
  • Train the classifier to the data. The features are contained in the features variable, and the target variable of interest is 'Churn'.
  • Predict the label of new_customer.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import DecisionTreeClassifier


# Instantiate the classifier


# Fit the classifier


# Predict the label of new_customer
print(____)
Code bewerken en uitvoeren