Importing different datatypes
The file seaslug.txt
- has a text header, consisting of strings
- is tab-delimited.
This data consists of the percentage of sea slug larvae that had metamorphosed in a given time period. Read more here.
Due to the header, if you tried to import it as-is using
np.loadtxt(), Python would throw you a ValueError and tell
you that it could not convert string to float. There are
two ways to deal with this: firstly, you can set the data type
argument dtype equal to str (for string).
Alternatively, you can skip the first row as we have seen before,
using the skiprows argument.
Deze oefening maakt deel uit van de cursus
Introduction to Importing Data in Python
Oefeninstructies
- Complete the first call to
np.loadtxt()by passingfileas the first argument. - Execute
print(data[0])to print the first element ofdata. - Complete the second call to
np.loadtxt(). Thefileyou're importing is tab-delimited, the datatype isfloat, and you want to skip the first row. - Print the 10th element of
data_floatby completing theprint()command. Be guided by the previousprint()call. - Execute the rest of the code to visualize the data.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Assign filename: file
file = 'seaslug.txt'
# Import file: data
data = np.loadtxt(____, delimiter='\t', dtype=str)
# Print the first element of data
print(data[0])
# Import file as floats and skip the first row: data_float
data_float = np.loadtxt(____, delimiter='____', dtype=____, skiprows=____)
# Print the 10th element of data_float
print(____)
# Plot a scatterplot of the data
plt.scatter(data_float[:, 0], data_float[:, 1])
plt.xlabel('time (min.)')
plt.ylabel('percentage of larvae')
plt.show()