High to low prices by region
Now you know how to sort a DataFrame, the estate agents have asked you to create a bar plot visualizing the average property price by region from largest to smallest.
regions has been created by grouping melb by region and calculating the average price, and preloaded for you:
regions = melb.groupby("region", as_index=False)["price"].mean()
Deze oefening maakt deel uit van de cursus
Interactive Data Visualization with Bokeh
Oefeninstructies
- Sort
regionsby price in descending order. - Create the figure, setting
x_rangeequal to the"region"column ofregionsand labeling the x- and y-axes as"Region"and"Sales", respectively. - Add bar glyphs from
regions, showing thepriceon the y-axis against eachregionon the x-axis, and setting the width to0.9 - Update the y-axis format to display in millions of dollars with 1 decimal place.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Sort df by price in descending order
regions = regions.____("____", ascending=____)
# Create figure
fig = figure(x_range=____, x_axis_label=____, y_axis_label=____)
# Add bar glyphs
fig.vbar(x=____, top=____, width=____)
# Format the y-axis to numeric format
fig.____[____].____ = ____(____="$0.0a")
output_file(filename="sorted_barplot.html")
show(fig)