Aan de slagGa gratis aan de slag

Why is t needed?

The process for calculating p-values is to start with the sample statistic, standardize it to get a test statistic, then transform it via a cumulative distribution function. In Chapter 1, that final transformation was denoted \(z\), and the CDF transformation used the (standard normal) z-distribution. In the last video, the test statistic was denoted \(t\), and the transformation used the t-distribution.

In which hypothesis testing scenario is a t-distribution needed instead of the z-distribution?

Deze oefening maakt deel uit van de cursus

Hypothesis Testing in Python

Cursus bekijken

Praktische interactieve oefening

Zet theorie om in actie met een van onze interactieve oefeningen.

Begin met trainen