Filtering pandas DataFrames
Once data has been extracted from a source system, it's time to transform it! Often, source data may have more information than what is needed for downstream use cases. If this is the case, dimensionality should be reduced during the "transform" phase of the data pipeline.
pandas has been imported as pd, and the extract() function is available to load a DataFrame from the path that is passed.
Deze oefening maakt deel uit van de cursus
ETL and ELT in Python
Oefeninstructies
- Use the
extract()function to load the DataFrame stored in the"sales_data.parquet"path. - Update the
transform()function to return all rows and columns with"Quantity Ordered"greater than 1. - Further filter the
clean_dataDataFrame to only include columns"Order Date","Quantity Ordered"and"Purchase Address". - Return the filtered DataFrame.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Extract data from the sales_data.parquet path
raw_sales_data = ____("sales_data.parquet")
def transform(raw_data):
# Only keep rows with `Quantity Ordered` greater than 1
clean_data = raw_data.____[____, :]
# Only keep columns "Order Date", "Quantity Ordered", and "Purchase Address"
clean_data = ____
# Return the filtered DataFrame
return ____
transform(raw_sales_data)