Aan de slagGa gratis aan de slag

The clipped surrogate objective function

Implement the calculate_loss() function for PPO. This requires coding the key innovation of PPO - the clipped surrogate loss function. It helps constrain the policy update to prevent it from moving too far away from the previous policy on each step.

The formula for the clipped surrogate objective is

Your environment has the clipping hyperparameter epsilon set to 0.2.

Deze oefening maakt deel uit van de cursus

Deep Reinforcement Learning in Python

Cursus bekijken

Oefeninstructies

  • Obtain the probability ratios between \pi_\theta and \pi_{\theta_{old}} (unclipped and clipped versions).
  • Calculate the surrogate objectives (unclipped and clipped versions).
  • Calculate the PPO clipped surrogate objective.
  • Calculate the actor loss.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

def calculate_losses(critic_network, action_log_prob, action_log_prob_old,
                     reward, state, next_state, done):
    value = critic_network(state)
    next_value = critic_network(next_state)
    td_target = (reward + gamma * next_value * (1-done))
    td_error = td_target - value
    # Obtain the probability ratios
    ____, ____ = calculate_ratios(action_log_prob, action_log_prob_old, epsilon=.2)
    # Calculate the surrogate objectives
    surr1 = ratio * ____.____()
    surr2 = clipped_ratio * ____.____()    
    # Calculate the clipped surrogate objective
    objective = torch.min(____, ____)
    # Calculate the actor loss
    actor_loss = ____
    critic_loss = td_error ** 2
    return actor_loss, critic_loss
  
actor_loss, critic_loss = calculate_losses(critic_network, action_log_prob, action_log_prob_old,
                                           reward, state, next_state, done)
print(actor_loss, critic_loss)
Code bewerken en uitvoeren