Aan de slagGa gratis aan de slag

Environment and neural network setup

You'll begin by setting up the environment you'll use throughout the course: the Lunar Lander environment, where an agent controls the thrusters for a vehicle attempting to land on the moon.

torch, torch.nn, torch.optim and gym are imported into your exercises.

Deze oefening maakt deel uit van de cursus

Deep Reinforcement Learning in Python

Cursus bekijken

Oefeninstructies

  • Initialize the Lunar Lander environment in gym (LunarLander-v2).
  • Define a single linear transformation layer, with input dimension dim_inputs and output dimension dim_outputs.
  • Instantiate the Neural Network for input dimension 8 and output dimension 4.
  • Provide the Adam optimizer with the parameters.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Initiate the Lunar Lander environment
env = gym.____

class Network(nn.Module):
    def __init__(self, dim_inputs, dim_outputs):
        super(Network, self).__init__()
        # Define a linear transformation layer 
        self.linear = ____
    def forward(self, x):
        return self.linear(x)

# Instantiate the network
network = ____

# Initialize the optimizer
optimizer = optim.Adam(____, lr=0.0001)

print("Network initialized as:\n", network)
Code bewerken en uitvoeren