Working with discrete distributions
You are soon going to work with stochastic policies: policies which represent the agent's behavior in a given state as a probability distribution over actions.
PyTorch can represent discrete distributions using the torch.distributions.Categorical class, which you will now experiment with.
You will see that it is actually not necessary for the numbers used as input to sum to 1, as probabilities do; they get normalized automatically.
Deze oefening maakt deel uit van de cursus
Deep Reinforcement Learning in Python
Oefeninstructies
- Instantiate the categorical probability distribution.
- Take one sample from the distribution.
- Specify 3 positive numbers summing to 1, to act as probabilities.
- Specify 5 positive numbers; Categorical will silently normalize them to obtain probabilities.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
from torch.distributions import Categorical
def sample_from_distribution(probs):
print(f"\nInput: {probs}")
probs = torch.tensor(probs, dtype=torch.float32)
# Instantiate the categorical distribution
dist = ____(probs)
# Take one sample from the distribution
sampled_index = ____
print(f"Taking one sample: index {sampled_index}, with associated probability {dist.probs[sampled_index]:.2f}")
# Specify 3 positive numbers summing to 1
sample_from_distribution([.3, ____, ____])
# Specify 5 positive numbers that do not sum to 1
sample_from_distribution([2, ____, ____, ____, ____])