Aan de slagGa gratis aan de slag

Seasonal decomposition II

Let's now have a look at how we can detect and visualize seasonality and trends in the environment data.

You'll be using statsmodels.seasonal_decompose() to do the decomposition then plot the results.

You will also resample the data to an hourly interval to see longer trends. Choosing a too short interval will prevent us from seeing clear trends and seasonalities.

matplotlib.pyplot as plt and import statsmodels.api as sm have been imported for you and the data has been loaded for you as df.

Deze oefening maakt deel uit van de cursus

Analyzing IoT Data in Python

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Resample DataFrame to 1h
df_seas = df.resample('1h').max()

# Run seasonal decompose
decomp = ____
Code bewerken en uitvoeren