Multivariate GAMs of auto performance
GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg dataset available in the gamair package to practice fitting models of different forms.
Questo esercizio fa parte del corso
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Istruzioni dell'esercizio
- Use the
head()andstr()functions to examine thempgdata set. - Fit a GAM to these data to predict
city.mpgas the sum of smooth functions ofweight,length, andprice. - Use the
plot()function provided to visualize the model.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
library(mgcv)
# Examine the data
___
___
# Fit the model
mod_city <- gam(city.mpg ~ ___,
data = mpg, method = "REML")
# Plot the model
plot(mod_city, pages = 1)