Category
Pandas provides the category
data type, which is analogous to the R factor.
You can convert a column into a categorical data type by passing 'category'
to the .astype()
method.
Once you have a categorical column, you can see the various categories (known as levels in R) by using the .cat
accessor and calling the .categories
attribute.
Another use case for categorical values is when you want to preserve ordering in your data.
For example, intuitively it makes sense that 'low' comes before 'high'. You can use reorder_categories()
to provide an order to a column.
# Reorder categorical levels
df['column_name'].cat.reorder_categories(['low', 'high'], ordered=True)
Cet exercice fait partie du cours
Python for R Users
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Convert the type of time column
tips['time'] = ____
# Use the cat accessor to print the categories in the time column
print(____)