Missing values
It is very rare to find a dataset that doesn't contain any missing values. Missing values are represented as NaN
in pandas. You can use the isnull()
pandas function to check for missing values.
pd.isnull(df['column'])
will return True
if the value is missing,
or False
if there are no missing values.
Compared to R, missing values behave a little differently in Python.
For example, the .mean()
method automatically ignores missing values in Python.
You can also recode missing values with the .fillna()
method. This will replace all missing values in the column with the provided value.
In this exercise, we've modified the tips
dataset such that it contains some missing values.
Cet exercice fait partie du cours
Python for R Users
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Print the rows where total_bill is missing
print(tips.loc[____(____)])