CommencerCommencer gratuitement

Visualizing drifting features

After ranking the univariate results, you know that drift hotel and country features are impacting the model's performance the most. In this exercise, you will look at the drift results and distribution plots of them to determine the root cause of the problem.

The results from the univariate drift calculator are stored in the uv_results variable.

Cet exercice fait partie du cours

Monitoring Machine Learning in Python

Afficher le cours

Instructions

  • Set period argument to analysis for drift_results.
  • Pass hotel and country to column_names for drift_results.
  • Set kind argument in .plot() method to "drift".
  • Do the same for distribution_results, except for setting the kind argument in .plot() method to "distribution".

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Filter and create drift plots
drift_results = uv_results.filter(
    period=____,
    column_names=[____, ____]
    ).plot(kind=____)

# Filter and create distribution plots
distribution_results = uv_results.filter(
    period=____,
    column_names=[____, ____]
    ).plot(kind=____)

# Show the plots
drift_results.show()
distribution_results.show()
Modifier et exécuter le code