CommencerCommencer gratuitement

Different chunking methods

A chunk represents a single data point in the monitoring results. Recall that there are three methods for chunking your data: based on time, size, or the number of chunks.

In this exercise, you will chunk and visualize the results of the CBPE algorithm for the US Census dataset using size-based and number-based chunking methods.

The nannyml library is already imported.

Cet exercice fait partie du cours

Monitoring Machine Learning in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

reference, analysis, analysis_gt = ____.____()

# Initialize the CBPE algorithm
cbpe = nannyml.CBPE(
    y_pred_proba='predicted_probability',
    y_pred='prediction',
    y_true='employed',
    metrics = ['roc_auc', 'accuracy'],
    problem_type = 'classification_binary',
    ____ = ____,
)

cbpe = cbpe.fit(reference)
estimated_results = cbpe.estimate(analysis)
estimated_results.plot().show()
Modifier et exécuter le code