CommencerCommencer gratuitement

Creating reference and analysis set

After your data is split into train, test, and production sets, you can build and deploy your model. The testing and production data will later be used to create the reference and analysis set.

In this exercise, you will go through this process. You have all of your X_train/test/prod, and y_train/test/prod datasets created in the previous exercise already loaded here.

For this exercise, pandas has been imported as pd and is ready for use.

Cet exercice fait partie du cours

Monitoring Machine Learning in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

from lightgbm import LGBMRegressor

# Fit the model
model = LGBMRegressor(random_state=111, n_estimators=50, n_jobs=1)
model.____(____, ____)

# Make predictions
y_pred_train = model.predict(____)
y_pred_test = model.predict(____)

# Deploy the model
y_pred_prod = model.predict(____)
Modifier et exécuter le code