Spectrograms of heartbeat audio
Spectral engineering is one of the most common techniques in machine learning for time series data. The first step in this process is to calculate a spectrogram of sound. This describes what spectral content (e.g., low and high pitches) are present in the sound over time. In this exercise, you'll calculate a spectrogram of a heartbeat audio file.
We've loaded a single heartbeat sound in the variable audio.
Cet exercice fait partie du cours
Machine Learning for Time Series Data in Python
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import the stft function
____
# Prepare the STFT
HOP_LENGTH = 2**4
spec = ____(audio, hop_length=HOP_LENGTH, n_fft=2**7)