Predicting using a classification model
Now that you have fit your classifier, let's use it to predict the type of flower (or class) for some newly-collected flowers.
Information about petal width and length for several new flowers is stored
in the variable targets. Using the classifier you fit, you'll predict the type of each flower.
Cet exercice fait partie du cours
Machine Learning for Time Series Data in Python
Instructions
- Predict the flower type using the array X_predict.
- Run the given code to visualize the predictions.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Create input array
X_predict = targets[['petal length (cm)', 'petal width (cm)']]
# Predict with the model
predictions = ____
print(predictions)
# Visualize predictions and actual values
plt.scatter(X_predict['petal length (cm)'], X_predict['petal width (cm)'],
            c=predictions, cmap=plt.cm.coolwarm)
plt.title("Predicted class values")
plt.show()