Techniques for detecting and correcting data drift
In machine learning, it's essential to understand how to maintain a deployed model's performance over time. One familiar challenge practitioners face is data drift, which occurs when the distribution of input data changes. Data drift can lead to decreased model performance and inaccurate predictions.
What are the appropriate steps for detecting and correcting data drift in machine learning models? (Select all that apply).
Cet exercice fait partie du cours
End-to-End Machine Learning
Exercice interactif pratique
Passez de la théorie à la pratique avec l’un de nos exercices interactifs
