CommencerCommencer gratuitement

Selecting report metrics

The classification_report() has many different metrics within it, but you may not always want to print out the full report. Sometimes you just want specific values to compare models or use for other purposes.

There is a function within scikit-learn that pulls out the values for you. That function is precision_recall_fscore_support() and it takes in the same parameters as classification_report.

It is imported and used like this:

# Import function
from sklearn.metrics import precision_recall_fscore_support
# Select all non-averaged values from the report
precision_recall_fscore_support(y_true,predicted_values)

The cr_loan_prep data set along with the predictions in preds_df have already been loaded in the workspace.

Cet exercice fait partie du cours

Credit Risk Modeling in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Print the classification report
target_names = ['Non-Default', 'Default']
print(____(____, ____[____], target_names=target_names))
Modifier et exécuter le code