Text summarization
One really common use case for DeepSeek models is summarizing text. This has a ton of applications in business settings, including summarizing reports into concise one-pagers or a handful of bullet points, or extracting the next steps and timelines for different stakeholders.
In this exercise, you'll summarize a passage of text on financial investment (finance_text
) into two concise bullet points using DeepSeek's chat model.
Este ejercicio forma parte del curso
Working with DeepSeek in Python
Instrucciones del ejercicio
- Use an f-string to insert
finance_text
intoprompt
. - Create a request, sending the
prompt
provided; use a maximum of400
tokens.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
client = OpenAI(api_key="", base_url="https://api.together.xyz/v1")
# Use an f-string to format the prompt
prompt = f"""Summarize the following text into two concise bullet points:
{____}"""
# Create a request to the chat model
response = client.chat.completions.create(
model="deepseek-ai/DeepSeek-V3",
messages=[{"role": "user", "content": ____}],
____
)
print(response.choices[0].message.content)