ComenzarEmpieza gratis

Finalizing the model

It is time to implement the results of your tuning work and impress the Human Resources team. You can finalize your model with the optimal penalty identified and see if it meets your expectations. Your results have been loaded, and the user-defined function class_evaluate() is available in your environment.

Este ejercicio forma parte del curso

Feature Engineering in R

Ver curso

Instrucciones del ejercicio

  • Select the optimal penalty for the Lasso.
  • Fit a final model using the optimal penalty.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Select the optimal penalty for the Lasso
best_penalty <- ___(tune_output, metric = 'roc_auc', desc(penalty)) 
best_penalty

# Fit a final model using the optimal penalty
final_fit <- ___(workflow_lasso_tuned, best_penalty) %>%
  fit(data = train)

final_fit %>% tidy()

final_fit %>% augment(test) %>% class_evaluate(truth = Attrition, 
                                   estimate = .pred_class,
                                   .pred_Yes)
Editar y ejecutar código