Fitting and assessing the model
Now that you have addressed missing values and created dummy variables, it is time to assess your model's performance!
The attritiondataset, along with the testand train splits, the lr_recipe and your declared logistic_model() are all loaded for you.
Este ejercicio forma parte del curso
Feature Engineering in R
Instrucciones del ejercicio
- Bundle model and recipe in workflow.
- Fit workflow to the train data.
- Generate an augmented data frame for performance assessment.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Bundle model and recipe in workflow
lr_workflow <- ___() %>%
add_model(lr_model) %>%
add_recipe(lr_recipe)
# Fit workflow to the train data
lr_fit <- ___(lr_workflow, data = train)
# Generate an augmented data frame for performance assessment
lr_aug <- lr_fit %>% ___(test)
lr_aug %>% roc_curve(truth = Attrition, .pred_No) %>% autoplot()
bind_rows(lr_aug %>% roc_auc(truth = Attrition, .pred_No),
lr_aug %>% accuracy(truth = Attrition, .pred_class))