ComenzarEmpieza gratis

Imputing missing values and creating dummy variables

After detecting missing values in the attrition dataset and determining that they are missing completely at random (MCAR), you decide to use K Nearest Neighbors (KNN) imputation. While configuring your feature engineering recipe, you decide to create dummy variables for all your nominal variables and update the role of the ...1 variable to "ID" so you can keep it in the dataset for reference, without affecting your model.

Este ejercicio forma parte del curso

Feature Engineering in R

Ver curso

Instrucciones del ejercicio

  • Update the role of ...1 to "ID".
  • Impute values to all predictors where data are missing.
  • Create dummy variables for all nominal predictors.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

lr_model <- logistic_reg()

lr_recipe <- 
  recipe(Attrition ~., data = train) %>%

# Update the role of "...1" to "ID"
  ___(...1, new_role = "ID" ) %>%

# Impute values to all predictors where data are missing
  step_impute_knn(___) %>%

# Create dummy variables for all nominal predictors
  ___(all_nominal_predictors())

lr_recipe
Editar y ejecutar código