Percent of variance explained
From the pca_output
, you can retrieve the standard deviation explained by each principal component. Then, use these values to compute the variance explained and the cumulative variance explained, and glue together these values into a tibble
.
The pca_output
object is loaded for you.
Este ejercicio forma parte del curso
Feature Engineering in R
Instrucciones del ejercicio
- Calculate percentage of variance explained leveraging the standard deviation vector.
- Create a tibble with principal components, variance explained and cumulative variance explained.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
sdev <- pca_output$steps[[3]]$res$sdev
# Calculate percentage of variance explained
var_explained <- ___
# Create a tibble with principal components, variance explained and cumulative variance explained
PCA = tibble(PC = 1:length(sdev), var_explained = ___,
cumulative = ___)