ComenzarEmpieza gratis

Which is the main predictor?

You've got a remarkable prediction, but what were the main predictors? How can you make sense of the model so that you can go beyond the raw results? Machine learning models are often criticized for their lack of interpretability. However, variable importance rankings shed some light on the relevance of your chosen features with the outcome. So let's investigate variable importance and go from there.

Este ejercicio forma parte del curso

Feature Engineering in R

Ver curso

Instrucciones del ejercicio

  • Create a variable importance chart.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

lr_fit <- lr_workflow %>%
  fit(test)

lr_aug <- lr_fit %>%
  augment(test)

lr_aug %>% class_evaluate(truth = Attrition,
                          estimate = .pred_class,
                          .pred_No)

# Create a variable importance chart
lr_fit %>%
  extract_fit_parsnip() %>%
  ___(aesthetics = list(fill = "steelblue"), num_features = 5)
Editar y ejecutar código