ComenzarEmpieza gratis

Prep and split

You will be working with the full attrition dataset with 1470 instances of 30 features related to the target variable Attrition, including missing values. The mission is to build a full end-to-end model to predict your target. The dataset is loaded for you.

You'll start by preparing and splitting the data.

Este ejercicio forma parte del curso

Feature Engineering in R

Ver curso

Instrucciones del ejercicio

  • Begin by transforming all character values to factors.
  • Create train and test splits.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Transform all character values to factors
attrition <- 
  attrition %>%
  mutate(___(where(___), as_factor))
  
# Create train and test splits
set.seed(123)
split <- initial_split(attrition, strata = Attrition)
test <- ___(split)
train <- ___(___)

glimpse(train)
Editar y ejecutar código