ComenzarEmpieza gratis

Finding class imbalance

You are focusing on the important preliminary phase of the machine learning lifecycle: Exploratory Data Analysis (EDA).

EDA allows you to better understand the nature of the heart_disease_df dataset, including the relationships between different variables, and potential problems that might need to be addressed before you move on to training your model. Understanding the distribution of classes in your features - for example, patient sex - is a key part of EDA.

Class imbalance, where one class has significantly more samples than another, can potentially bias your model's training process, leading it to favor the majority class.

Este ejercicio forma parte del curso

End-to-End Machine Learning

Ver curso

Instrucciones del ejercicio

  • Print out the class balance of the sex column.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Print the sex value counts of the heart disease dataset
print(____[____].____)
Editar y ejecutar código