ComenzarEmpieza gratis

Delete MCAR

Analyzing and appropriately treating missing values is a tricky job. However, dealing with them is very simple if the number of missing values is very small. In the video exercise, you learned how to properly identify, when to drop, and remove missing data.

In this exercise, you'll listwise delete the rows where the Glucose column has missing values. The diabetes DataFrame and the missingnopackage as msno has already been loaded for you.

Note that we've used a proprietary display() function instead of plt.show() to make it easier for you to view the output.

Este ejercicio forma parte del curso

Dealing with Missing Data in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Visualize the missingness of diabetes prior to dropping missing values
___

# Display nullity matrix
display("/usr/local/share/datasets/matrix_diabetes.png")
Editar y ejecutar código