Identifying latent features
Print original_df and user_matrix using the console. The user_matrix is one of the factors of the original_df.
Based on the values in the first column of the user_matrix, what do you think the latent feature may be summarizing?
Note the first row of user_matrix corresponds to User 1, the second row to User_2, and so on.
Remember that latent features tend to represent underlying trends in the data and give items with these underlying trends similar scores.
Este ejercicio forma parte del curso
Building Recommendation Engines in Python
Ejercicio interactivo práctico
Pon en práctica la teoría con uno de nuestros ejercicios interactivos
Empezar ejercicio