ComenzarEmpieza gratis

KNN with outlier probabilities

Since we cannot wholly trust the output when using contamination, let's double-check our work using outlier probabilities. They are more trustworthy.

The dataset has been loaded as females and KNN estimator is also imported.

Este ejercicio forma parte del curso

Anomaly Detection in Python

Ver curso

Instrucciones del ejercicio

  • Instantiate KNN with 20 neighbors.
  • Calculate outlier probabilities.
  • Create a boolean mask that returns true values where the outlier probability is over 55%.
  • Use is_outlier to filter the outliers from females.

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Instantiate a KNN with 20 neighbors and fit to `females`
knn = ____
knn.____

# Calculate probabilities
probs = ____

# Create a boolean mask
is_outlier = ____

# Use the boolean mask to filter the outliers
outliers = ____

print(len(outliers))
Editar y ejecutar código