KNN for the first time
You will practice KNN for the first time on a version of the Ansur Body Measurements dataset for females. The female version also contains 95 columns but only 1.9k observations.
The dataset has been loaded as females into the environment.
Este ejercicio forma parte del curso
Anomaly Detection in Python
Instrucciones del ejercicio
- Import the
KNNestimator from the relevantpyodmodule. - Instantiate a
KNN()estimator with 0.5% contamination and 20 neighbors asknn. - Create a boolean index named
is_outlierthat returnsTruewhen thelabels_ofknnreturn 1. - Isolate the outliers from
femalesusingis_outlierintooutliers.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Import KNN from the relevant pyod module
from pyod.____ import ____
# Instantiate KNN and fit to females
knn = KNN(____, ____, n_jobs=-1)
knn.____
# Create a boolean index that checks for outliers
is_outlier = ____
# Isolate the outliers
outliers = ____
print(len(outliers))